PreCalculus Review Lesson 3

Determine if each relation is a function. Explain.

1.	X^2	+	y^2	=	5
----	-------	---	-------	---	---

2.
$$y + 1 = 4\sqrt{x-2}$$

3.
$$y-2=10 (x-3)$$

4.
$$x-3=y^2+8$$

5.

Finding the Domain of a Function Defined by an Equation

←from Notes 2-1a

- 1. Start with the domain as the set of all real numbers.
- 2. If the equation has a denominator, exclude any numbers that give a zero denominator.
- 3. If the equation has a radical of even index, exclude any numbers that cause the expression inside the radical (the radicand) to be negative.

Find the domain and write it in interval notation.

7.
$$f(x) = 3x^2 + 7$$

$$8. \qquad f(x) = \frac{5}{2x+1}$$

$$9. \qquad f(x) = \frac{x}{-4x - 7}$$

10.
$$f(x) = \sqrt{x-6}$$

11.
$$f(x) = \sqrt{-3x+1}$$

12.
$$f(x) = \frac{10x^2}{\sqrt{-x+5}}$$

Even function:

Odd function:

A function f is even if f(-x) = f(x)graph is symmetric with respect to the y-axis

A function f is odd if f(-x) = -f(x). graph is symmetric with respect to the origin

Determine if the function is even, odd, or neither. Explain.

EXAMPLES Determine <u>algebraically</u> whether a function is even.

Step 1: Replace every x with -x and simplify;

Step 2: If the result is equal to the original f(x), then the function is EVEN, so f(x) = f(-x)

EXAMPLES Determine <u>algebraically</u> whether a function is odd.

Step 1: Replace every x with -x and y with -y. Simplify and solve for y.

Step 2: If the result is equal to the original f(x), then the function is ODD, so f(-x) = -f(x).

Determine algebraically if the function is even, odd, or neither.

DOIC	Determine digebraically if the foriction is even, odd, or heither.			
	$f(x) = -8x^2$		$f(x) = x^3 + 4$	
18.	$f(x) = 5x^4 + x^2 + 3$	19.	$f(x) = -2x^3 - 5x^2$	
20.	$f(x) = -x^4 + 2x - 1$	21.	$f(x) = 4x^3 + 7x$	

Intercepts:

*y-intercept: the value of f(x) at x = 0, written as an ordered pair, (0, y). The y-intercept is where the function crosses the y-axis.

*x-intercept: solution(s) of the equation. Written as ordered pairs, (x, 0).

*zeros of f

*roots of f

Find all the intercepts.

	an monetopis.		
22.	$f(x) = 2x^2 - 26x - 60$	23.	$f(x) = 2x^3 - 11x^2 - 21x$

Increasing & Decreasing Functions	Increasing/Decreasing Steps		
*f is increasing on an interval when the slope is positive. *f is decreasing on an open interval when slope is negative.	Step 1: Vertical lines through turning points		
	Step 2: Label sections as INC or DEC.		
	Step 3: Label the x-axis with $-\infty$ and ∞		
*f is constant on an open interval when the slope is 0.	Step 4: Read the x-axis for each section.		

Local Maximum; Local Minimum

A function f has a **local maximum at c** if there is an open interval f containing c so that, for all $x \ne c$ in f, f(x) < f(c). *A function f has a **local maximum** at a peak.

A function f has a **local minimum at c** if there is an open interval f containing c so that, for all $x \ne c$ in f, f(x) > f(c). *A function f has a **local minimum** at a valley.

Answer the questions about the graph. Use interval notation.

24.

Domain: _____

Range: _____

Increasing: _____

Decreasing: _____

Local Maxima: _____

Local Minimum: _____

f(x) < 0: _____

 $f(x) \ge 0$:

ALL Intercepts: _____

In how many places will y = 4 intercept the graph?

25.

Domain: _____

Range: _____

Increasing: _____

Decreasing: _____

Local Maximum: _____

Local Minima: _____

f(x) < 0: _____

f(x) ≥ 0: _____

ALL Intercepts: _____

In how many places will $y = -\frac{1}{3}$ intercept the graph?