Student:

\qquad

1. Evaluate each expression using the values given in the table.

\mathbf{x}	-3	-2	-1	0	1	2	3
$\mathbf{f}(\mathbf{x})$	10	8	6	4	2	0	-2
$\mathbf{g}(\mathbf{x})$	-4	-1	0	3	0	-1	-4

a. $(\mathrm{f} \circ \mathrm{g})(1)$
b. $(f \circ \mathrm{~g})(2)$
c. $(g \circ f)(2)$
d. $(g \circ f)(3)$
e. $(\mathrm{g} \circ \mathrm{g})(1)$
f. $(f \circ f)(3)$
a. $(f \circ g)(1)=$ \qquad
b. $(\mathrm{f} \circ \mathrm{g})(2)=$ \qquad
c. $(g \circ f)(2)=$ \qquad
d. $(g \circ f)(3)=$ \qquad
e. $(\mathrm{g} \circ \mathrm{g})(1)=$ \qquad
f. $(f \circ f)(3)=$ \qquad
2. Given $f(x)=8 x$ and $g(x)=3 x^{2}+6$, find the following expressions.
(a) $(f \circ g)(4)$
(b) $(g \circ f)(2)$
(c) $(f \circ f)(1)$
(d) $(\mathrm{g} \circ \mathrm{g})(0)$
(a) $(f \circ g)(4)=$ \qquad (Simplify your answer.)
(b) $(g \circ f)(2)=$ \qquad (Simplify your answer.)
(c) $(f \circ f)(1)=$ \qquad (Simplify your answer.)
(d) $(\mathrm{g} \circ \mathrm{g})(0)=$ \qquad (Simplify your answer.)
3. If $f(x)=5 x^{3}-4 x^{2}+9 x-8$ and $g(x)=0$, find $(f \circ g)(x)$ and $(g \circ f)(x)$.

What is $(f \circ g)(x)$?
$(f \circ g)(x)=$ \qquad
What is $(g \circ f)(x)$?
$(g \circ f)(x)=$ \qquad
4. For the following function, determine whether the function is one-to-one.
$\{(4,6),(3,9),(-7,14),(6,-5)\}$
Is the function one-to-one?NoYes
5. For the function below, determine whether the function is one-to-one.
$\{(8,8),(9,9),(10,19),(11,70)\}$
Is the function one-to-one?NoYes
6. The graph of a function f is given. Use the horizontal-line test to determine whether f is one-to-one.

Is fone-to-one?YesNo
7. The graph of a function f is given. Use the horizontal-line test to determine whether f is one-to-one.

Is f one-to-one? Choose the correct answer below.NoYes
8. Find the inverse of the one-to-one function. State the domain and the range of the inverse function.

$$
\{(-8,6),(-7,15),(-6,13),(-5,10),(-4,7)\}
$$

The inverse function is \{ \qquad \}.
(Type an ordered pair. Use a comma to separate answers as needed.)
The domain of the inverse function is \{ \qquad \}.
(Use a comma to separate answers as needed.)
The range of the inverse function is \{ \qquad \}.
(Use a comma to separate answers as needed.)
9. The graph of a one-to-one function is shown to the right.

Draw the graph of the inverse function f^{-1}.

Choose the correct graph of the inverse function f^{-1} below.
A.

B.

C.
10. Solve the equation.

$$
2^{-x}=4
$$

The solution set is \qquad $\}$.
(Type an integer or a simplified fraction. Use a comma to separate answers as needed.)
11. Change the exponential statement to an equivalent statement involving a logarithm.
$125=5^{3}$

The equivalent logarithmic statement is \qquad . (Type an equation.)
12. Change the logarithmic statement to an equivalent statement involving an exponent.

$$
\log _{2} 16=x
$$

The equivalent exponential statement is \qquad . (Type an equation.)
13. Evaluate the expression without using a calculator.

$$
\log _{7} 1
$$

$\log _{7} 1=$ \qquad
(Type an integer or a simplified fraction.)
14. Find the domain of the function.

$$
g(x)=\ln (x+7)
$$

The domain of g is \qquad .
(Type your answer in interval notation.)
15. Solve the following equation.
$\log _{2} x=4$
The solution set is 3. (Simplify your answer.)

